Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nurziana Ngah,* Najiha Darman and Bohari M. Yamin

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
nurziana_ngah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.106$
Data-to-parameter ratio $=10.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[3-(4-Methoxybenzoyl)thioureido]propionic acid

In the title molecule, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, the methoxybenzoyl group is trans to the thiono S atom across the $\mathrm{C}-\mathrm{N}$ bond. The propionic acid group adopts a gauche conformation about the $\mathrm{C}-\mathrm{C}$ bond, with a $\mathrm{C}_{\mathrm{COOH}}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of 64.9 (4) ${ }^{\circ}$. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains parallel to the c axis.

Comment

The title compound, (I), is a carbonoylthiourea derivative of β-alanine analogous to 3-(3-benzoylthiouredo)propionic acid, (II) (Yusof \& Yamin, 2003), except that a methoxy group is attached at the para position of the benzoyl group (Fig. 1).

(I)

The molecule maintains its cis-trans configuration with respect to the positions of the propionic acid and 4methoxybenzoyl groups relative to the S 1 atom across the $\mathrm{C} 9-\mathrm{N} 2$ and $\mathrm{C} 9-\mathrm{N} 1$ bonds, respectively. In addition, the molecule adopts a gauche conformation about the $\mathrm{C} 10-\mathrm{C} 11$ bond, with a $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 2$ torsion angle of 64.9 (4) \AA; in contrast, compound (II) adopts an anti conformation with a torsion angle of $-179.12(16)^{\circ}$. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II). However, the O3-C12 bond length [1.325 (4) A] is slightly longer than that in (II) $[1.296(2) \mathrm{A}]$. The 4methoxyphenyl [C1-C6/O1/C7 (A)] and central carbonylthiourea $[\mathrm{S} 1 / \mathrm{O} 2 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 9(B)]$ fragments are essentially planar. In the propionic acid fragment [O3/O4/C10/C11/C12 (C)], the maximum deviation from the mean plane is 0.186 (4) A for atom C10. The dihedral angles A / B and B / C are 10.35 (13) and $62.08(17)^{\circ}$, respectively. The 4-methoxyphenyl unit is inclined to the propionic acid mean plane with a dihedral angle of $54.29(19)^{\circ}$, compared with $22.46(13)^{\circ}$ in (II). The intramolecular hydrogen bond $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$

Received 29 June 2006
Accepted 11 July 2006
\qquad

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. The dashed line represents a hydrogen bond.

Figure 2
Packing diagram of the title complex, viewed down the b axis. The dashed lines denote intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
(Table 2) forms a pseudo-six-membered ring ($\mathrm{N} 2 / \mathrm{H} 2 \mathrm{~A} / \mathrm{O} 2 / \mathrm{C} 8 /$ N1/C9).

In the crystal structure, molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a one-dimensional chain parallel to the c axis, in contrast to a two-dimensional hydrogen-bonded network in (II). The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental

A solution of 3-aminopropionic acid ($0.05 \mathrm{~mol}, 4.45 \mathrm{~g}$) in 20 ml acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar solution of 4-methoxybenzoylisothiocyanate $(0.05 \mathrm{~mol}, 9.65 \mathrm{~g})$ in 20 ml acetone. The mixture was refluxed for about 5 h and then filtered into a beaker containing ice cubes. The resulting yellow precipitate was washed with cold acetone and distilled water. The product was dried under vaccum and kept in a desiccator (yield $11.99 \mathrm{~g}, 85 \%$; m.p. 430.3-431.1 K). Recrystallization from ethanol yielded yellow crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=282.31$
Monoclinic, $P C$
$a=9.795$ (3) \AA
$b=4.7790(13) \AA$
$c=14.951$ (4) \AA
$\beta=108.275(5)^{\circ}$
$V=664.6(3) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, yellow
$0.34 \times 0.17 \times 0.07 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.912, T_{\text {max }}=0.979$
3159 measured reflections 1792 independent reflections 1660 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.106$
$S=1.15$
1792 reflections
172 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0526 P)^{2}\right. \\
& +0.0617 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 628 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.16 \text { (11) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C9	$1.687(4)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.375(4)$
O2-C8	$1.231(4)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.382(5)$
O3-C12	$1.325(4)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.318(4)$
O4-C12	$1.201(5)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.463(5)$
C9-N1-C8	$128.2(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{S} 1$	$122.0(3)$
N2-C9-N1	$117.7(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{S} 1$	$120.3(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.86	1.94	$2.622(4)$	135
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.82	2.32	$3.126(3)$	169
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 4^{\mathrm{ii}}$	0.86	2.26	$3.113(4)$	170
$\mathrm{C} 1-\mathrm{H} 1 B \cdots 4^{\mathrm{ii}}$	0.93	2.28	$3.155(6)$	156

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $x,-y, z+\frac{1}{2}$.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-$ $\mathrm{H}=0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for CH and NH groups and $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for CH_{3} and OH groups.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

organic papers

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

